High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots
نویسندگان
چکیده
It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast to optical methods, they allow the identification of the dopants and provide information about the spatial distribution of the electronic wave function. This latter aspect is particularly attractive because it allows for a quantitative measurement of the effect of confinement on the shape and properties of the wave function. In this contribution EPR and ENDOR results are presented on doped ZnO QDs. Shallow donors (SDs), related to interstitial Li and Na and substitutional Al atoms, have been identified in this material by pulsed high-frequency EPR and ENDOR spectroscopy. The shallow character of the wave function of the donors is evidenced by the multitude of ENDOR transitions of the (67)Zn nuclear spins and by the hyperfine interaction of the (7)Li, (23)Na and (27)Al nuclear spins that are much smaller than for atomic lithium, sodium and aluminium. The EPR signal of an exchange-coupled pair consisting of a shallow donor and a deep Na-related acceptor has been identified in ZnO nanocrystals with radii smaller than 1.5 nm. From ENDOR experiments it is concluded that the deep Na-related acceptor is located at the interface of the ZnO core and the Zn(OH)(2) capping layer, while the shallow donor is in the ZnO core. The spatial distribution of the electronic wave function of a shallow donor in ZnO semiconductor QDs has been determined in the regime of quantum confinement by using the nuclear spins as probes. Hyperfine interactions as monitored by ENDOR spectroscopy quantitatively reveal the transition from semiconductor to molecular properties upon reduction of the size of the nanoparticles. In addition, the effect of confinement on the g-factor of SDs in ZnO as well as in CdS QDs is observed. Finally, it is shown that an almost complete dynamic nuclear polarization (DNP) of the (67)Zn nuclear spins in the core of ZnO QDs and of the (1)H nuclear spins in the Zn(OH)(2) capping layer can be obtained. This DNP is achieved by saturating the EPR transition of SDs present in the QDs with resonant high-frequency microwaves at low temperatures. This nuclear polarization manifests itself as a hole and an antihole in the EPR absorption line of the SD in the QDs and a shift of the hole (antihole). The enhancement of the nuclear polarization opens the possibility to study semiconductor nanostructures with nuclear magnetic resonance techniques.
منابع مشابه
Optical, Thermal and Structural Properties of CdS Quantum Dots Synthesized by A Simple Chemical Route
The present work deals with the synthesis and characterization of CdS nanoparticles with good thermal stability and optical properties by a novel and simple synthetic route. The nanoparticles were synthesized via chemical precipitation method in a single reaction vessel under ambient conditions. The prepared CdS nanoparticles were compared with the bulk CdS. The Optical properties were determin...
متن کاملProceedings of the International Society of Magnetic Resonance XHIth Meeting Parti joint 29 th AMPERE - 13 th ISMAR »
For the study of defects in III-V semiconductors an enhancement of sensitivity with respect to the conventional detection of electron paramagnetic and electron-nuclear double resonance (EPR/ENDOR) is necessary, because of low defect concentrations together with broad EPR lines and very small sample volumes as in the case of epitaxial layers. This can be achieved by optical detection of EPR and ...
متن کاملHigh temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots
The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs). High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...
متن کاملPulsed 180-GHz EPR/ENDOR/PELDOR spectroscopy.
Within this review, we describe a home-built pulsed electron paramagnetic resonance (EPR) spectrometer operating at 180 GHz as well as the incorporation of two double resonance techniques, electron nuclear double resonance (ENDOR) and pulsed electron double resonance (PELDOR), along with first applications. Hahn-echo decays on a TEMPO/polystyrene sample are presented, demonstrating that the obs...
متن کاملHigh-Quality Manganese-Doped ZnSe Nanocrystals
We demonstrate high-quality, highly fluorescent, ZnSe colloidal nanocrystals (or quantum dots) that are doped with paramagnetic Mn2+ impurities. We present luminescence, magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) measurements to confirm that the Mn impurities are embedded inside the nanocrystal. Optical measurements show that by exciting the nanocrystal, effici...
متن کامل